Empirical Formula	
From percentage to formula	

The Empirical Formula

- The lowest whole number ratio of elements in a compound.
- The molecular formula the actual ratio of elements in a compound
- The two can be the same.
- CH₂ empirical formula
- C₂H₄ molecular formula
- C₃H₆ molecular formula
- H₂O both

Calculating Empirical

- Just find the lowest whole number ratio
- \bullet C₆H₁₂O₆
- CH₂O
- It is not just the ratio of atoms, it is also the ratio of moles of atoms
- In one molecule of CO₂ there is 1 atom of C and 2 atoms of O
- In 1 mole of CO₂ there is 1 mole of carbon and 2 moles of oxygen

Calculating Empirical

- Pretend that you have a 100 gram sample of the compound.
- That is, change the % to grams.
- Convert the grams to mols for each element.
- Write the number of mols as a subscript in a chemical formula.
- Divide each number by the least number.
- Multiply the result to get rid of any fractions.

Example

- Calculate the empirical formula of a compound composed of 38.67 % C, 16.22 % H, and 45.11 %N.
- Assume 100 g so
- 38.67 g C x $\frac{1 \text{mol C}}{12.01 \text{ g C}}$ = 3.22 mole C
- 16.22 g H x $\underline{1 \text{mol H}}$ = 16.09 mole H 1.01 g H
- 45.11 g N x $\frac{1 \text{mol N}}{14.01 \text{ g N}}$ = 3.22 mole N

- 3.22 mole C
- 16.09 mole H
- 3.22 mole N

 ${}^{\bullet}C_{3.22}H_{16.09}N_{3.22}$

If we divide all of these by the smallest one It will give us the empirical formula

-	

• A compound is 42.64 % D and 56.26 % O	
• A compound is 43.64 % P and 56.36 % O. What is the empirical formula?	
$43.6 \text{ g P x} \underline{1 \text{mol P}} = 1.4 \text{ mole P}$	
$56.36 \text{ g O x } \underline{1 \text{mol O}} = 3.5 \text{ mole O}$	
16 g O	
P _{1.4} O _{3.5}	

Divide	both by the	e lowest one	
	P _{1.4} O _{3.5}		
• The ratio is	3.5 mol O = 1.4 mol P	2.5 mol O 1 mol P	
	P ₁ O _{2.5}		

• 49.48g C • 1mol 12g	= 4.1mol	We divide by lowest (1mol O) and ratio
• 5.15 g H • $\frac{1mol}{1g}$	= 5.2mol	doesn't change
• 28.87g N • 1mol	= 2.2mol	Since they are close to whole numbers we will
• 16.49 g O • $\frac{1mo}{16g}$	= 1.0mol	use this formula

Empirical to molecular

- Since the empirical formula is the lowest ratio the actual molecule would weigh more.
- By a whole number multiple.
- Divide the actual molar mass by the mass of one mole of the empirical formula.
- Caffeine has a molar mass of 194 g. what is its molecular formula?

$\text{Cl}_2\text{C}_2\text{H}_4$	We divide by lowest (2mol)	
Cl ₁ C ₁ H ₂		
would give a	n empirical wt of 48.5g/r	nol
	s is known (from gas density 98.96 g. What is its molect	

This powerpoint was kindly donated to www.worldofteaching.com
http://www.worldofteaching.com is home to over a thousand powerpoints submitted by teachers. This is a completely free site and requires no registration. Please visit and I hope it will help in your teaching.